Carbon-Encapsulated Co3O4 Nanoparticles as Anode Materials with Super Lithium Storage Performance

نویسندگان

  • Xuning Leng
  • Sufeng Wei
  • Zhonghao Jiang
  • Jianshe Lian
  • Guoyong Wang
  • Qing Jiang
چکیده

A high-performance anode material for lithium storage was successfully synthesized by glucose as carbon source and cobalt nitrate as Co3O4 precursor with the assistance of sodium chloride surface as a template to reduce the carbon sheet thickness. Ultrafine Co3O4 nanoparticles were homogeneously embedded in ultrathin porous graphitic carbon in this material. The carbon sheets, which have large specific surface area, high electronic conductivity, and outstanding mechanical flexibility, are very effective to keep the stability of Co3O4 nanoparticles which has a large capacity. As a consequence, a very high reversible capacity of up to 1413 mA h g(-1) at a current density of 0.1 A g(-1) after 100 cycles, a high rate capability (845, 560, 461 and 345 mA h g(-1) at 5, 10, 15 and 20 C, respectively, 1 C = 1 A g(-1)), and a superior cycling performance at an ultrahigh rate (760 mA h g(-1) at 5 C after 1000 cycles) are achieved by this lithium-ion-battery anode material.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoparticle Decorated Ultrathin Porous Nanosheets as Hierarchical Co3O4 Nanostructures for Lithium Ion Battery Anode Materials

We report a facile synthesis of a novel cobalt oxide (Co3O4) hierarchical nanostructure, in which crystalline core-amorphous shell Co3O4 nanoparticles with a bimodal size distribution are uniformly dispersed on ultrathin Co3O4 nanosheets. When tested as anode materials for lithium ion batteries, the as-prepared Co3O4 hierarchical electrodes delivered high lithium storage properties comparing to...

متن کامل

Porous nano-structured Co3O4 anode materials generated from coordination-driven self-assembled aggregates for advanced lithium ion batteries.

A simple and scalable coordination-derived method for the synthesis of porous Co3O4 hollow nanospheres is described here. The initially formed coordination-driven self-assembled aggregates (CDSAAs) could act as the precursor followed by calcination treatment. Then the porous hollow Co3O4 nanospheres are obtained, in which the primary Co3O4 nanoparticles are inter-dispersed. When the nanospheres...

متن کامل

Designed Synthesis of Transition Metal/Oxide Hierarchical Peapods Array with the Superior Lithium Storage Performance

In this report, a novel hierarchical peapoded array with Co3O4 nanoparticles encapsulated in graphitized carbon fiber is introduced for the first time. The unique peapoded structure is suitable for the excellent anode in LIBs and demonstrates enhanced rate capability, cyclability and prolonged lifespan, e.g. the specific capacity can reach up to 1150 mAh/g. All the enhanced electrochemical perf...

متن کامل

Synthesis and Electrochemical Lithium Storage Behavior of Carbon Nanotubes Filled with Iron Sulfide Nanoparticles

Carbon nanotubes (CNTs) filled with iron sulfide nanoparticles (NPs) are prepared by inserting sulfur and ferrocene into the hollow core of CNTs followed by heat treatment. It is found that pyrrhotite-11T iron sulfide (Fe-S) NPs with an average size of ≈15 nm are encapsulated in the tubular cavity of the CNTs (Fe-S@CNTs), and each particle is a single crystal. When used as the anode material of...

متن کامل

Ultrafine Mo2C nanoparticles encapsulated in N-doped carbon nanofibers with enhanced lithium storage performance.

Rechargeable lithium ion batteries (LIBs) have attracted extensive attention globally due to their good cycling stability, high energy density, and rapid-rate capability, while the rational design of electrode materials can significantly improve their electrochemical performance. In this work, ultrafine Mo2C nanoparticles (NPs) were successfully encapsulated in one dimensional (1D) N-doped poro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015